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The nonlinear dynamics of a biological double membrane that consists of two coupled lipid bilayers, typical
of some intracellular organelles such as mitochondria or nuclei, is studied. A phenomenological free-energy
functional is formulated in which the curvatures of the two parts of the double membrane and the distance
between them are coupled to the lipid chemical composition. The derived nonlinear evolution equations for the
double-membrane dynamics are studied analytically and numerically. A linear stability analysis is performed,
and the domains of parameters are found in which the double membrane is stable. For the parameter values
corresponding to an unstable membrane, numerical simulations are performed that reveal various types of
complex dynamics, including the formation of stationary, spatially periodic patterns.
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I. INTRODUCTION

Biological membranes are intricate structures composed
of lipids, proteins, carbohydrates, and other materials that
participate in a number of cell functions necessary to sustain
life �1�. Some of the basic properties of biological mem-
branes can be understood by studying the behavior of lipid
bilayers; they represent the simplest model for complex bio-
logical membranes �2,3� and have been attracting great atten-
tion. Lipid bilayers are usually formed when amphiphilic
molecules self-assemble and orient in water due to strong
hydrophobic interactions. A fluid mosaic model of biological
membranes, first introduced over thirty years ago, describes
the molecular composition of a membrane as an asymmetric,
fluid, lipidic bilayer �4�.

In biomembranes, the three fundamental aspects of mem-
brane phenomena include external degrees of freedom, such
as membrane curvature, internal degrees of freedom, such as
the local density of amphiphilic molecules and the local con-
centration of one of several types of amphiphiles, and the
interaction between membranes �5�. The properties of a
single-component, self-assembled membrane in equilibrium
are, to a large extent, governed by the amount of energy
needed to bend the bilayer �2�. Some models have been de-
veloped to introduce the local composition of a multicompo-
nent bilayer in thermodynamic equilibrium �6–12�. It was
shown, both theoretically and experimentally, that phase
separation within a multicomponent membrane can lead to
morphological transitions �8,9,13�. Bud formation is an ex-
ample of such a change, in which a large “parent” vesicle
sprouts out a spherical bud consisting of one of the lipid
species �14,15�.

In reality, biomembranes are constantly out of equilibrium
as a result of the functioning of active components, i.e., pro-
teins participating in ion transport, cell adhesion, locomo-
tion, signaling, and other physiological processes. Diffusion
of the active proteins in the membrane provides a nonthermal
source of noise for membrane shape alterations. More real-
istic studies have recently included active proteins �16–20�
or externally activated chemical processes �21,22� to model
membranes as nonequilibrium systems that exhibit sustained
time-dependent patterning.

So far, most of studies have been limited to single bilipid
membranes. In nature, some intracellular organelles, such as
mitochondria, nuclei, and chloroplasts, have two membranes,
outer and inner ones �1�, with an intermembrane region be-
tween them: the inner membrane separates the interior of the
organelle from the intermembrane space and the latter is
separated from the environment by the outer membrane.

The dynamics of such a double membrane has been much
less studied theoretically. In fact, the only theoretical inves-
tigation of the dynamics of a double membrane that we are
aware of is the one by Kats et al. �23�. They considered a
model in which the free energy of a double-membrane sys-
tem depends on the undulation �bending� deformations of the
system as a whole and the squeezing deformations that de-
pend on the modulations of the intermembrane distance. The
effect of thermal fluctuations on the behavior of the two
modes was investigated in �23� in the long-wave limit. It was
shown that the behavior of the squeezing mode was strongly
affected by its nonlinear coupling with the transverse hydro-
dynamic mode and that its characteristic frequency was in-
dependent of the bending elasticity.

In the present paper, we investigate the dynamics of a
double bilayer membrane for the case when each of the two
membranes consists of two different lipid components that
can undergo phase separation. We focus on the effect of
phase separation in the membranes on the morphology of the
double-membrane system. We take into account the possible
coupling between the intermembrane distance and the mem-
brane compositions, as well as the composition dependence
of the membrane spontaneous curvatures. In the present
model, we do not consider nonequilibrium fluxes across the
membranes and concentrate only on the relaxation of a
double-membrane system toward thermodynamic equilib-
rium triggered by phase separation in one or both mem-
branes. One of the main goals of our paper is to see whether
the coupled dynamics of the two membranes in a double-
membrane system can lead to the formation of complex
structures.

II. THE MODEL

Consider two lipid bilayer membranes described as two-
dimensional surfaces. We introduce a Cartesian coordinate
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system with the z axis normal to the flat membranes and
in-plane coordinates x= �x ,y�. In the Monge parametrization
�24�, the two deformable surfaces are described by z
=h1�x ,y� and z=h2�x ,y�, respectively �see Fig. 1�. Each
membrane consists of two types of lipids, with the local
composition characterized by an order parameter �1,2�x ,y�,
where �1,2=0 corresponds to a chemically homogeneous
membrane. The spontaneous curvature of each membrane
depends only on the corresponding order parameter, and the
zero values of the order parameters correspond to flat mem-
branes. We also assume that the double-membrane system is
characterized by an equilibrium distance between the mem-
branes that also depends on the order parameters �1,2. We
assume here that the double membrane undergoes relax-
ational dynamics toward thermodynamic equilibrium that
can be described by means of an appropriate free-energy
functional. Thus we ignore possible hydrodynamic effects
associated with the incompressible fluid separating the two
membranes, as well as possible hydrodynamic flows in the
inner and outer regions. This assumption is reasonable in the
case when the fluids surrounding the membranes are highly
viscous and the membranes themselves are very permeable
by the molecules of the fluids �see, e.g., �16��.

The free energy of the double-membrane system can be
described by the following functional:

F =� � f1��1� +
�1

2
���1�2 + f2��2� +

�2

2
���2�2

+ g�h2 − h1,�1,�2� +
�1

2
��2h1 − �1�1�2

+
�2

2
��2h2 − �2�2�2�dx dy . �1�

Here the functions

f i��i� =
�i

2
�i

2 +
�i

4
�i

4, i = 1,2, �2�

describe the chemical parts of the system free energy, the
terms with coefficients �1,2 describe the bending rigidity of
the two membranes, and the function g describes the energy
penalty for the deviation of the intermembrane distance from
its equilibrium value d0. In order to be able to describe the
nonlinear evolution of an unstable double membrane leading
to large membrane deformations, and therefore not allowing
the two membranes to cross each other, we assume the fol-
lowing intermembrane interaction potential:

g�h2 − h1,�1,�2� = ��h2 − h1

d0
�−	

exp�	�h2 − h1�
d0

� , �3�

where 	
0 describes the strong repulsion of the two mem-
branes when they approach each other so that the intermem-
brane distance becomes much smaller than the equilibrium
distance d0 corresponding to the minimum of this function.
The function �3� is shown in Fig. 2�a�. Obviously, this po-
tential is not relevant when the distance between the two
membranes becomes very large, since at very large distances
the membrane interaction should decay; however, we are not
interested in this case in the present paper.

The equilibrium distance d0 is assumed to be dependent
on the order parameters �1,2. If each of the two membranes
can be composed of two components A and B, four cases of
“pure” membrane compositions should be considered:
�A ,A�, �A ,B�, �B ,A�, and �B ,B�. Clearly, the equilibrium
intermembrane distance in the cases �A ,B� and �B ,A� must
be the same, whereas in the cases �A ,A� and �B ,B� it can be
different. The function

d0��1,�2� = d00 +
�

2
�tanh �1 + tanh �2� �4�

has the required property, as shown in Fig. 2�b�.
The terms ��1 /2����1�2 and ��2 /2����2�2 in �1� corre-

spond to the energies of the boundaries between the domains
with different chemical compositions within each membrane.
Thus, the first four terms of the energy functional correspond
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FIG. 1. Model setup.

C. SAMPLE AND A. A. GOLOVIN PHYSICAL REVIEW E 76, 031925 �2007�

031925-2



to the typical Ginzburg-Landau free energy for a phase sepa-
rating system. The terms with local extrinsic curvatures that,
from the Monge parametrization, are approximated as �2h1,2

are well known as the Helfrich Hamiltonian �24,25�. Note
that the surface tension contribution can be neglected in the
free energy for self-assembled free membranes �23�. All the
parameters are positive except for �1,2, �1,2, and �1,2, which
can have either sign. Note also that in a real system, such as
the double membranes in mitochondria, the chemical part of
the free-energy functional of the two membranes can be
much more complicated and may involve several order pa-
rameters for each membrane. Here we focus on the simplest
possible case when each membrane is characterized by one
order parameter, as a means to understand possible qualita-
tive effects of the coupling between the membrane chemical
composition and its morphology. The dynamics of a multi-
component single bilipid membrane has recently been stud-
ied in �26,27�.

The evolution of the order parameters �1 and �2 is de-
scribed by the conservation dynamics,

�t�1,2 + � · j1,2 = 0, �5�

where the fluxes j1,2 can be expressed through the corre-
sponding chemical potentials 1,2 as

j1 = − D1 � 1 − D12 � 2, �6�

j2 = − D2 � 2 − D21 � 1. �7�

Here D1,2, D12, and D21 are the elements of the kinetic coef-
ficient matrix, and D12=D21, according to the Onsager prin-
ciple �28�. Since 1,2=�F /��1,2, we obtain the following
evolution equations for the order parameters:

��1

�t
= D1�

2� �F
��1

� + D12�
2� �F

��2
� , �8�

��2

�t
= D2�

2� �F
��2

� + D12�
2� �F

��1
� . �9�

Thus, the coefficients D1,2 describe the diffusion of the
order parameter within the corresponding membrane, and the
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FIG. 4. Examples of dispersion curves determined by �16� with �1=−1 and �2=1 as common parameters. �a� One unstable short-wave
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coefficient D12 describes the possibility of inducing a diffu-
sion flux in one of the membranes by the order-parameter
gradient in the other membrane. The cross-diffusion effect
should depend on the distance between the two membranes.
One can expect it to be significant if the intermembrane dis-
tance is of the same order of magnitude as or smaller than the
typical radius of intermolecular forces acting between the
two lipid bilayers. Otherwise, the cross-diffusion effect is
expected to be negligible. Although we are not aware of any
measurements of cross-diffusion effect in double mem-
branes, we keep it in our analysis for the sake of generality.
Of course, our results are also valid for the case D12=0. We
will in future refer to the coefficients D as diffusion coeffi-
cients.

The membrane shapes are described by the relaxational
dynamics

�h1

�t
= − M1

�F
�h1

, �10�

�h2

�t
= − M2

�F
�h2

, �11�

where M1,2 are the mobility parameters. Thus, after changing
h2−d00→h2, the membrane dynamics is described by the
following system of equations:

��1

�t
= D1���1 + �1

2�1��2�1 − �1�
4�1 − �1�1�

4h1�

+ D1�
2	�1�1

3 +
�

2
	g�h2 − h1,�1,�2�

�� 1

d0
−

h2 − h1

d0
2 �sech2 �1
 + D12���2 + �2

2�2��2�2

− �2�
4�2 − �2�2�

4h2�

+ D12�
2	�2�2

3 +
�

2
	g�h2 − h1,�1,�2�

�� 1

d0
−

h2 − h1

d0
2 �sech2 �2
 , �12�

��2

�t
= D2���2 + �2

2�2��2�2 − �2�
4�2 − �2�2�

4h2�

+ D2�
2	�2�2

3 +
�

2
	g�h2 − h1,�1,�2�

�� 1

d0
−

h2 − h1

d0
2 �sech2 �2
 + D12���1 + �1

2�1��2�1

− �1�
4�1 − �1�1�

4h1� + D12�
2	�1�1

3 +
�

2
	g�h2

− h1,�1,�2�� 1

d0
−

h2 − h1

d0
2 �sech2 �1
 , �13�

�h1

�t
= M1	�1�1�

2�1 − �1�
4h1 − 	g�h2 − h1,�1,�2�

�� 1

h2 − h1
−

1

d0
�
 , �14�
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FIG. 8. Numerical solution of the system �12�–�15� at a particu-
lar moment of time for the case when the second mode is long-wave
unstable: �a� �2�x ,y�, �b� h2�x ,y�, �c� �1�x ,y�, and �d� h1�x ,y�. Here
the parameter values are �1=−1, �2=1, �1=0.9, �2=1, �1=1, and
�2=0.1.
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�h2

�t
= M2	�2�2�

2�2 − �2�
4h2 + 	g�h2 − h1,�1,�2�

�� 1

h2 − h1
−

1

d0
�
 . �15�

III. LINEAR STABILITY ANALYSIS

In this section we perform a linear stability analysis of the
planar double-membrane described by Eqs. �12�–�15� in or-
der to understand under which conditions such a membrane
is stable. The steady state corresponds to planar, chemically
homogeneous membranes, h1=0 , h2=d00, �1=�2=0.

Consider infinitesimal perturbations of the steady state,

�̃1,2=R1,2eik·x+�t and h̃1,2=H1,2eik·x+�t, and linearize the sys-

tem �12�–�15� to obtain the following dispersion relation:

�4 + A�k��3 + B�k��2 + C�k�� + D�k� = 0, �16�

where

A�k� = a0 + a2k2 + a4k4, �17�

B�k� = b2k2 + b4k4 + b6k6 + b8k8, �18�

C�k� = c4k4 + c6k6 + c8k8 + c10k
10 + c12k

12, �19�

D�k� = d8k8 + d10k
10 + d12k

12 + d14k
14 + d16k

16, �20�

and the coefficients depend on physical parameters �and are
given in the Appendix�. For k=0, Eq. �16� has three zero
roots corresponding to three zero modes: uniform translation
of the whole system and conservation of the order param-
eters in the two membranes. The nonzero mode �1=−a0 cor-
responds to a change of the intermembrane distance. For k
�0, it corresponds to the varicose deformation mode.

The membrane is stable if all roots of Eq. �16� have nega-
tive real parts. A necessary and sufficient condition is given
by the Routh-Hurwitz criterion �29�. We find that the neces-
sary condition for stability that gives the short-wave cutoff is

D1D2 − D12
2 
 0. �21�

For k�1, we expand the varicose deformation mode �1

=�1
�0�+�1

�2�k2, the two phase separation modes �2,3=�2,3
�2�k2

+�2,3
�4�k4, and the mixed mode associated with the coupling

between bending rigidity of the membranes and their chemi-
cal composition, �4=�4

�4�k4, where, provided ��1+�1
2�1���2

+�2
2�2��0,

�1
�0� = − a0 = − 	�e	�M1 + M2� ,

�1
�2� = − a2 +

b2

a0
= −

1

4
	�e	�2�D1 + D2 + 2D12� ,

�2,3
�2� = −

b2 ± �b2
2 − 4a0c4

2a0
,
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FIG. 9. �a� Surface plot and �b� cross section of the shape and
�c� composition of the membranes in Fig. 8.

FIG. 10. Numerical solution of the system �12�–�15� at a par-
ticular moment in time for the case when the fourth mode is long-
wave unstable: �a� �2�x ,y�, �b� h2�x ,y�, �c� �1�x ,y�, and �d� h1�x ,y�.
Here the parameter values are �1=−1, �2=1, �1=12, �2=1, �1

=0.3, and �2=10.
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�2,3
�4� = −

d8 + w2,3
�2��c6 + w2,3

�2��b4 + w2,3
�2��a2 + w2,3

�2���
c4 + w2,3

�2��2b2 + 3a0w2,3
�2��

,

�4
�4� = −

d8

c4
= −

M1M2��1�2��1 + �2� + �1�2��2�1
2 + �1�2

2��
�M1 + M2���1 + �1

2�1���2 + �2
2�2�

,

�22�

with the coefficients given in the Appendix. In this expan-
sion, provided the condition �21� is satisfied, �1 is always
negative, and the long-wave varicose mode is damped. If
��1+�1

2�1�=0 or ��2+�2
2�2�=0, we obtain �2=�2

�2�k2

+�2
�4�k4 and �3,4=�3,4

�3�k3+�3,4
�4�k4, where �2

�2� and �2
�4� remain

the same as in Eqs. �22� and

�3,4
�3� = ±�− d8

b2
, �3,4

�4� =
a0d8 − b2c6

2b2
2 . �23�

For the case when �1+�1
2�1=�2+�2

2�2=0, one obtains �2,3

=�2,3
�3�k3+�2,3

�4�k4 and �4=�4
�4�k4, where

�2,3
�3� = ±�− c6

a0
, �2,3

�4� =
1

2
�d10

c6
−

b4

a0
�, �4

�4� = −
d10

c6
.

�24�

Using the Routh-Hurwitz criterion, we conclude that the sys-
tem is always stable for �1 and �2 positive, the system may
become unstable when either �1 or �2 is negative, and the
system is always unstable for both �1 and �2 negative, with
at most two unstable modes. In the long-wave limit, the nec-
essary and sufficient conditions for the stability of the sec-
ond, third, and fourth modes are

�1 + �1
2�1 
 0, �25�

�2 + �2
2�2 
 0, �26�

�1�2��1 + �2� + �1�2�ha2�1
2 + �1�2

2�
��1 + �1

2�1���2 + �2
2�2�


 0, �27�

respectively. If �27� holds and either or both �25� and �26�
hold, the fourth mode may become unstable with respect to
perturbations with finite wavelength �provided �1 or �2 is
negative�. Otherwise, if �1 and �2 are negative and �25� and
�26� hold, one mode may become unstable with respect to
perturbations with finite wavelength. Figure 3 shows ex-
amples of regions in the ��1 , �2� parameter plane in which
different modes are subject to long-wave instability. Note
that, due to the coupling between the intermembrane distance
and the chemical compositions of the two membranes, phase
separation in only one of the membranes �i.e., when one of
the conditions �25� and �26� is not satisfied� can cause mor-
phological instability in the whole double-membrane system.
This situation is in a sense analogous to instability of a single
membrane when phase separation of a mixed state causes the
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FIG. 11. �a� Surface plot and �b� cross section of the shape and
�c� composition of the membranes in Fig. 10.

FIG. 12. Numerical solution of the system �12�–�15� at a par-
ticular moment of time for the case when the fourth mode is short-
wave unstable: �a� �2�x ,y�, �b� h2�x ,y�, �c� �1�x ,y�, and �d� h1�x ,y�.
Here the parameter values are �1=−1, �2=1, �1=2, �2=1, �1=4,
and �2=1.
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instability of a flat membrane due to the coupling between
the chemical composition and the membrane curvature �9�.
Similarly, as in the case of a single membrane �21�, the
double-membrane instability is triggered by phase separation
only and cannot occur simply due to the coupling between
the chemical composition and the curvature. Indeed, in the
absence of phase separation, i.e., for �1,2
0, the basic state
of two flat, chemically homogeneous membranes corre-
sponds to a minimum point of the free-energy functional and
therefore is absolutely stable. Conversely, when �1�0 or
�2�0, the basic state can become a saddle point, which
leads to the instability.

The most interesting examples of dispersion curves are
shown in Fig. 4: one can see that the system can have one
unstable short-wave mode �Fig. 4�a��, one unstable mode
that corresponds to both long- and short-wave instability

�Fig. 4�b��, and also one long-wave and one short-wave
mode �Fig. 4�c�� present at the same time. Here and through-
out the rest of the paper, D1=D2=M1=M2=�1=�2=1, D12
=0, 	=0.1, �=0.1, and �=0.9.

Examples of neutral stability diagrams in the parameter
planes corresponding to the bending rigidities and the cou-
pling constants describing the effect of the membrane com-
position on the spontaneous curvatures are shown in Figs. 5
and 6. Figure 5 corresponds to the case when only one mode
can be unstable. This mode can be long wave, short wave, or
“combined” as shown in Fig. 7. An example of the neutral
stability boundaries in the case when two modes can become
unstable is shown in Fig. 6. Here also the two modes can be
both long wave, one long wave and one short wave, or com-
bined �see also Fig. 7�.

IV. NUMERICAL SIMULATIONS

In this section, we describe the results of the numerical
simulations of the system �12�–�15�. We have represented the
system �12�–�15� in the form ut=Lu+ �N−L�u, where u
= ��1 ,h1 ,�2 ,h2�T, N is the right-hand side of �12�–�15�, and L
is N linearized around the steady state corresponding to h1
=0, h2=d00, �1=0, and �2=0. Numerical integration has
been performed using a pseudospectral method, with time
integration in Fourier space, using the Crank-Nicolson
scheme for the linear operator L and the Adams-Bashforth
scheme for the nonlinear operator N−L. We use periodic
boundary conditions and the initial conditions corresponding
to small-amplitude random perturbations of the steady state.
Two-dimensional numerical simulations have been per-
formed for the cases with one or two unstable modes that are
long wave, short wave, or combined �see Fig. 7�. In the fig-
ures below, the representative cases are shown.

Figures 8 and 9 show the membrane shapes and the cor-
responding order parameters in the case when the system is
unstable with respect to one of the two long-wave phase
separation modes, �2 or �3. We observe that in this case, for
�2
0 ��3
0�, the first �second� membrane develops deep
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FIG. 13. �a� Surface plot and �b� cross section of the shape and
�c� composition of the membranes in Fig. 12.

FIG. 14. Numerical solution of the system �12�–�15� at a par-
ticular moment of time for the case when the fourth mode is short-
wave unstable: �a� �2�x ,y�, �b� h2�x ,y�, �c� �1�x ,y�, and �d� h1�x ,y�.
Here the parameter values are �1=−1, �2=1, �1=2, �2=1, �1=2,
and �2=1.
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grooves that follow the corresponding phase separation pro-
cess, while the second �first� membrane develops shallow
grooves coupled to small changes in the corresponding order
parameter �see Figs. 8 and 9�. Note that deep grooves in the
first �inner� membrane can be thought of as the precursors to
the formation of cristae in mitochondria.

Figures 10 and 11 show the shapes of the two membranes
and the order parameters for the case when the mixed long-
wave mode �4 is unstable. One can see that in this case the
two membranes develop labyrinth-type structures coupled to
the order-parameter fields. The corrugations of the two mem-
branes are in phase, and the membrane deformations are
much larger than the distance between the membranes �see
Figs. 10 and 11�. Note also that, in this particular case, the
variations of the order parameter in the second membrane are
much smaller than those in the first one; this is because phase
separation occurs in the first membrane ��1�0�, while the
order-parameter variations in the second membrane are
slaved to those in the first one and are smeared out by diffu-
sion ��2
0�.

The most interesting feature of the coupled dynamics of
the two membranes is that the mixed mode �4, as shown in
the previous section, can exhibit short-wave instability and
therefore lead to pattern formation. The results of numerical
simulations corresponding to this interesting case are shown
in Figs. 12 and 13. One can see the shapes of the two mem-
branes forming hexagonal patterns. The membrane shapes
are correlated with the order-parameter field �chemical com-
position� due to the coupling between the latter and the spon-
taneous curvature. In the case shown in Figs. 12 and 13 the
amplitude of the pattern in the first membrane is much larger
than that in the second one since �1=−1 and �2=1, and the
phase separation occurs primarily in the first membrane.

Note that the short-wave instability occurs when certain
parameters exceed their critical values. In the case shown in
Figs. 12 and 13, we chose the bifurcation parameter to be the
spontaneous curvature coefficient of the first membrane, �1.
With the decrease of �1 the system becomes more unstable.
The patterns shown in Figs. 12 and 13 correspond to �1=4.
With the increase of supercriticality �decrease of �1� the
symmetry of the pattern changes: the hexagonal pattern be-
comes unstable with respect to the stripe pattern. Such stripe
patterns formed in the membranes at �1=2 are shown in
Figs. 14 and 15. Note that the transition from a hexagonal to
a stripe pattern with the increase of supercriticality is a typi-
cal phenomenon in pattern formation �30�.

We also note that, in �21�, a Turing-type instability in a
single bilipid biological membrane was shown to occur in
the case when there are chemical reactions between different
types of lipids. This also can result in the formation of spa-
tially regular hexagonal or stripe patterns �21�. In our case,
the Turing-type instability and pattern formation result from
the coupling between the two bilipid membranes.

We have also run numerical simulations for the case when
there is one unstable mode �4 that has two unstable domains
corresponding to long and short waves �see Fig. 4�b��. In this
case we have observed that, when the growth rate corre-
sponding to the short-wave instability is larger than that cor-
responding to the long-wave one, a hexagonal pattern is
formed �see Fig. 16�. In the case when the long-wave part of

the dispersion curve has the higher growth rate, a labyrinth
pattern develops, similar to the one shown in Fig. 10.

Finally, we have also performed numerical simulations for
the case when there are two unstable modes, either both long
wave or one long ��2 or �3� and one short wave ��4�. In all
the cases, the membrane shapes are observed to be in phase
and to exhibit a dominant phase separation process, so that
the membrane shape and the order-parameter field look simi-
lar to those shown in Fig. 10. The pattern evolution in time
has been found to exhibit coarsening typical of phase sepa-
rating systems: the characteristic scale of surface structures
and the amplitude of the membrane corrugations grow with
time.

V. CONCLUSIONS

In conclusion, we have proposed a model for the phase
separation dynamics of a double lipid bilayer membrane.
Such double membranes are typical of some intracellular or-
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FIG. 15. �a� Surface plot and �b� cross section of the shape and
�c� composition of the membranes in Fig. 14.
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ganelles such as mitochondria or nuclei. Our model describes
relaxation of the membrane shapes �spontaneous curvatures�
and the intermembrane distance toward thermodynamic
equilibrium induced by phase separation in one or both of
the membranes. The key ingredient of our model is the cou-
pling of the membrane shapes and the intermembrane dis-
tance to the membranes’ chemical composition.

Within the framework of this model, we have performed a
linear stability analysis and found the conditions under
which such a double membrane is stable. System instability
can be caused by phase separation in one of the membranes
which, due to the coupling between the membrane geometry
and the chemical composition, leads to morphological
changes in the two membranes. We have found that there are
two types of instabilities. One type is the long-wave instabil-
ity, which is associated with phase separation in one of the
membranes and leads to the formation of labyrinth-type mor-
phological structures in both membranes that coarsen in
time. The other type is the short-wave instability, which is
caused by the coupling between the two membranes. Near
threshold, this instability results in the formation of spatially
regular hexagonal morphological structures. Farther from the
instability threshold, the system exhibits a transition from
hexagonal to striped structures, typical of many other pattern
forming systems. Also, we have observed that, with the for-
mation of such morphological structures, it is possible that,
due to asymmetry of the properties of the two membranes,
the amplitude of the shape corrugations of one membrane
will be much larger than that of the other one. This can be
considered as a precursor to the formation of such structures
as cristae in mitochondria.

Thus, we have shown that phase separation in a double-
membrane system can lead to the formation of complex spa-
tial morphological structures. Of course, our present model is
far from being able to describe a real biological membrane as
in mitochondria or nuclei. A model describing a realistic
double-membrane system must include, first of all, nonequi-
librium chemical fluxes across the two membranes, into and
out of the intermembrane space. Also, hydrodynamic flows
generated in the intermembrane space as well as in the inner

and outer regions can be important, especially for mitochon-
dria because of the low permeability of the inner membrane.
Yet another important factor is the presence of multiple
chemical components in the two membranes which can re-
quire a description by means of several order parameters. We
plan to include the above effects in further development of
our model of a double-membrane system that will be pre-
sented elsewhere.
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APPENDIX

The coefficients in Eqs. �17�–�20� are

a0 = e	�	�M1 + M2� ,

a2 =
1

4
�2e	�	D12�

2 + D1�e	�	�2 + 4�1 + 4�1
2�1�

+ D2�e	�	�2 + 4�2 + 4�2
2�2�� ,

a4 = D1�1 + D2�2 + M1�1 + M2�2,

b2 = e	�	�M1 + M2��D1��1�1
2 + �1� + D2��2�2

2 + �2�� ,

b4 =
1

4
„− �e	��2	�1�1

2 + 4�2
2�1�2�1

2 + �2�e	�	�2 + 4�1
2�1�

+ e	��2	�2
2�2 + �1�e	�	�2 + 4�2 + 4�2

2�2��D12
2

− 4e	��	�M1�1�1 − M2�2�2�D12 + 4e	�	�M1M2��1

+ �2� + D2�M1�2 + M2��2 + ��2�2�� + D1�4e	�	�M2�1

+ M1��1 − ��1�1�� + D2�e	��2	�1�1
2 + 4�2

2�1�2�1
2

+ �2�e	�	�2 + 4�1
2�1� + e	��2	�2

2�2 + �1�e	�	�2

+ 4�2 + 4�2
2�2�� + D1�4e	�	�M2�1 + M1��1 − ��1�1��

+ D2�e	��2	�1�1
2 + 4�2

2�1�2�1
2 + �2�e	�	�2 + 4�1

2�1�

+ e	��2	�2
2�2 + �1�e	�	�2 + 4�2 + 4�2

2�2��… ,

b6 =
1

4
„2e	�	D12�M1�1 + M2�2��2 − D12

2 ��2�e	�	�2 + 4�1

+ 4�1
2�1� + �1�e	�	�2 + 4�2 + 4�2

2�2��

+ D2�M2�e	�	�2 + 4�2��2 + M1�1�e	�	�2 + 4�2

+ 4�2
2�2�� + D1�M1�e	�	�2 + 4�1��1 + M2�e	�	�2

+ 4�1 + 4�1
2�1��2 + D2��2�e	�	�2 + 4�1 + 4�1

2�1�

+ �1�e	�	�2 + 4�2 + 4�2
2�2��… ,

FIG. 16. Numerical solution of the system �12�–�15� at a par-
ticular moment of time for the case when the fourth mode has a
combined instability: �a� �2�x ,y�, �b� h2�x ,y�, �c� �1�x ,y�, and �d�
h1�x ,y�. Here the parameter values are �1=−1, �2=1, �1=1, �2

=1, �1=4.75, and �2=5.
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b8 = − �1�2D12
2 + D2M1�2�1 + D2M2�2�2 + M1M2�1�2

+ D1�1�D2�2 + M1�1 + M2�2� ,

c4 = e	�	�D1D2 − D12
2 ��M1 + M2���1�1

2 + �1���2�2
2 + �2� ,

c6 = e	�	†− �M1��2�1�1
2 − ��2

2�1�2�1 + �1�2 + �2��1

− ��1�1� + �1�2
2�2� + M2��2�1�1

2 + ��2�1�2�1
2 + �2�1

+ �1�2
2�2 + �1��2 + ��2�2��D12

2 − 2M1M2�1�2�1�2D12

+ D2M1M2��1�2�2
2 + �2��1 + �2�� + D1�M1M2��1�2�1

2

+ �1��1 + �2�� + D2�M1��2�1�1
2 − ��2

2�1�2�1 + �1�2

+ �2��1 − ��1�1� + �1�2
2�2 + M2��2�1�1

2 + ��2�1�2�1
2

+ �2�1 + �1�2
2�2 + �1��2 + ��2�2����‡ ,

c8 =
1

4
„− �M2��e	��2	�1�1

2 + �1�e	�	�2 + 4�2�

+ �2�e	�	�2 + 4�1
2�1���2 + 4e	�	�1��2 + ��2�2�

+ M1�4e	�	�1�2 + �1��1�e	�	�2 + 4�2 + 4�2
2�2�

+ e	��	���2�2
2 + ��2 − 4�2�1��D12

2

− 4e	��	M1M2��1 − �2��1�2D12

+ 4e	�	D2M1M2���2�1�2 + �2��1 + �2��

+ D1�4e	�	M1M2��1��1 + �2� − ��1�1�2�

+ D2�M2��e	��2	�1�1
2 + �1�e	�	�2 + 4�2�

+ �2�e	�	�2 + 4�1
2�1���2 + 4e	�	�1��2 + ��2�2

�

+ M1�4e	�	�1�2 + �1��1�e	�	�2 + 4�2 + 4�2
2�2�

+ e	��	���2�2
2 + ��2 − 4�2�1����… ,

c10 =
1

4
„2e	�	D12M1M2�1�2�2 + D2M1M2�e	�	�2

+ 4�2��1�2 − D12
2 �M2��e	�	�2 + 4�2��1 + �2�e	�	�2

+ 4�1 + 4�1
2�1���2 + M1�1��e	�	�2 + 4�1��2

+ �1�e	�	�2 + 4�2 + 4�2
2�2�� + D1�M1M2�e	�	�2

+ 4�1��1�2 + D2�M2��e	�	�2 + 4�2��1 + �2�e	�	�2

+ 4�1 + 4�1
2�1��2 + M1�1��e	�	�2 + 4�1��2

+ �1�e	�	�2 + 4�2 + 4�2
2�2����… ,

c12 = D1�1�M1M2�1�2 + D2�2�M1�1 + M2�2��

− �2�D12
2 �1�M1�1 + M2�2� − D2M1M2�1�2� ,

d8 = e	�	�D1D2 − D12
2 �M1M2��2�1�2�1

2 + �1��1�2�2
2

+ �2��1 + �2�� ,

d10 = e	�	�D1D2 − D12
2 �M1M2���2�1

2 + �1�2
2��1�2

+ �2��1��1 + �2� − ��1�1�2�

+ �1���2�1�2 + �2��1 + �2�� ,

d12 =
1

4
�D1D2 − D12

2 �M1M2���1�e	�	�2 + 4�2�

+ e	��	���2 − 4�2�1���1�2 + 4e	�	�1���2�1�2

+ �2��1 + �2�� ,

d14 =
1

4
�D1D2 − D12

2 �M1M2��e	�	�2 + 4�2��1 + �e	�	�2

+ 4�1��2��1�2,

d16 = �D1D2 − D12
2 �M1M2�1�2�1�2.
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